Catastrophic eruption of magnetic flux rope in the corona and solar wind with and without magnetic reconnection
نویسندگان
چکیده
It is generally believed that the magnetic free energy accumulated in the corona serves as a main energy source for solar explosions such as coronal mass ejections (CMEs). In the framework of the flux rope catastrophe model for CMEs, the energy may be abruptly released either by an ideal magnetohydrodynamic (MHD) catastrophe, which belongs to a global magnetic topological instability of the system, or by a fast magnetic reconnection across preexisting or rapidly-developing electric current sheets. Both ways of magnetic energy release are thought to be important to CME dynamics. To disentangle their contributions, we construct a flux rope catastrophe model in the corona and solar wind and compare different cases in which we either prohibit or allow magnetic reconnection to take place across rapidly-growing current sheets during the eruption. It is demonstrated that CMEs, even fast ones, can be produced taking the ideal MHD catastrophe as the only process of magnetic energy release. Nevertheless, the eruptive speed can be significantly enhanced after magnetic reconnection sets in. In addition, a smooth transition from slow to fast eruptions is observed when increasing the strength of the background magnetic field, simply because in a stronger field there is more free magnetic energy at the catastrophic point available to be released during an eruption. This suggests that fast and slow CMEs may have an identical driving mechanism. Subject headings: Sun: corona − Sun: magnetic fields − Sun: coronal mass ejections(CMEs)
منابع مشابه
Predictions of Energy and Helicity in Four Major Eruptive Solar Flares
In order to better understand the solar genesis of interplanetary magnetic clouds (MCs), we model the magnetic and topological properties of four large eruptive solar flares and relate them to observations. We use the three-dimensional Minimum Current Corona model (Longcope, 1996, Solar Phys. 169, 91) and observations of pre-flare photospheric magnetic field and flare ribbons to derive values o...
متن کاملTwo-current-sheet Reconnection Model of Interdependent Flare and Coronal Mass Ejection
Time-dependent resistive magnetohydrodynamic simulations are carried out to study a flux rope eruption caused by magnetic reconnection with implication in coexistent flare-CME (coronal mass ejection) events. An early result obtained in a recent analysis of double catastrophe of a flux rope system is used as the initial condition, in which an isolated flux rope coexists with two current sheets: ...
متن کاملTwo Energy Release Processes for CMEs: MHD Catastrophe and Magnetic Reconnection
It remains an open question how magnetic energy is rapidly released in the solar corona so as to create solar explosions such as solar flares and coronal mass ejections (CMEs). Recent studies have confirmed that a system consisting of a flux rope embedded in a background field exhibits a catastrophic behavior, and the energy threshold at the catastrophic point may exceed the associated open fie...
متن کاملOn Flare-CME Characteristics from Sun to Earth Combining Remote-Sensing Image Data with In Situ Measurements Supported by Modeling
We analyze the well-observed flare and coronal mass ejection (CME) from 1 October 2011 (SOL2011-10-01T09:18) covering the complete chain of effects - from Sun to Earth - to better understand the dynamic evolution of the CME and its embedded magnetic field. We study in detail the solar surface and atmosphere associated with the flare and CME using the Solar Dynamics Observatory (SDO) and ground-...
متن کاملAcceleration of the solar wind as a result of the reconnection of open magnetic flux with coronal loops
[1] There are compelling observations of a clear anticorrelation between solar wind flow speed and coronal electron temperature, as determined from solar wind ionic charge states. A simple theory is presented which can account for these observations, including the functional form of the correlation: Solar wind flow speed squared varies essentially linearly as the inverse of the coronal electron...
متن کامل